Measurement

Pythagoras' theorem $a^2 + b^2 = c^2$

Circumference of circle, radius r $C = 2\pi r$

Arc length of circle, central angle θ

$$l = \frac{\theta}{360} 2\pi r$$

Area of circle $A = \pi r^2$

Area of sector

$$A = \frac{\theta}{360}\pi r^2$$

Area of triangle, base *b* and height *h* $A = \frac{1}{2}bh$

Area of parallelogram A = bh

Area of trapezium, parallel sides *a* and *b* $A = \frac{1}{2}(a+b)h$

Volume of prism, base area AV = Ah

Volume of pyramid

$$V = \frac{1}{3}Ah$$

Surface area of cylinder $S = 2\pi rh + 2\pi r^2$

Volume of cylinder $V = \pi r^2 h$

Surface area of cone, slant height s $S = \pi r^2 + \pi rs$

Volume of cone

$$V = \frac{1}{3}\pi r^2 h$$

Surface area of sphere $S = 4\pi r^2$

Volume of sphere $V = \frac{4}{3}\pi r^3$

Trigonometry

 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$

 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

Area
$$A = \frac{1}{2}ab\sin C$$

Heron's Rule:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
 where $s = \frac{a+b+c}{2}$

Linear equations

Gradient $m = \frac{y_2 - y_1}{x_2 - x_1}$

Equation y = mx + c

Consumer arithmetic

P is the principal, *A* is the final balance, *I* is the interest, *r* is the annual rate of interest as a decimal, *n* is the number of compounding periods and *t* is the time in years.

Simple interest I = Prt

Compound interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Price-to-earnings ratio $PE = \frac{\text{Market value per share}}{\text{Earnings per share}}$

Univariate data analysis

Standard score, for normally distributed data set with mean \bar{x} and standard deviation s

deviation
$$s_x$$

 $z = \frac{x - \bar{x}}{s_x}$

In a normal distribution, approximately 68% of values lie within one, 95% of values lie within two and 99.7% of values lie within three, standard deviations of the mean.

In a data set with lower quartile Q_1 , upper quartile Q_3 and interquartile range IQR, possible outliers lie below $Q_1 - 1.5IQR$ or above $Q_3 + 1.5IQR$.